Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
International Journal of Oral Biology ; : 190-199, 2021.
Article in English | WPRIM | ID: wpr-914639

ABSTRACT

Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

2.
Immune Network ; : e34-2021.
Article in English | WPRIM | ID: wpr-914553

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell “E” epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the “E” epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5Especific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry.Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

3.
International Journal of Oral Biology ; : 39-44, 2021.
Article in English | WPRIM | ID: wpr-898705

ABSTRACT

This study aimed to investigate whether neurotransmitter receptors in the nervous system were also expressed in oral keratinocytes. Expressions of various neurotransmitter receptor genes in immortalized mouse oral keratinocyte (IMOK) cells were examined by reverse transcriptase polymerase chain reaction. IMOK cells expressed calcitonin gene-related peptide (CGRP) receptor subunit genes Ramp1 and Ramp3 and glutamate receptor subunit genes Grina , Gria3 , Grin1 , Grin2a , and Grin2d . Moreover, IMOK cells expressed Adrb2 and Chrna5 that encode beta 2 adrenergic receptor and cholinergic receptor nicotinic alpha 5 for sympathetic and parasympathetic neurotransmitters, respectively. The expression of Bdkrb1 and Ptger4 , which encode receptors for bradykinin and prostaglandin E2 involved in inflammatory responses, was also observed at low levels. Expressions of Ramp1 and Grina in the mouse gingival epithelium were also confirmed by immunohistochemistry. When the function of neurotransmitter receptors expressed on IMOK cells was tested by intracellular calcium response, CGRP, glutamate, and cholinergic receptors did not respond to their agonists, but the bradykinin receptor responded to bradykinin. Collectively, oral keratinocytes express several neurotransmitter receptors, suggesting the potential regulation of oral epithelial homeostasis by the nervous system.

4.
International Journal of Oral Biology ; : 39-44, 2021.
Article in English | WPRIM | ID: wpr-891001

ABSTRACT

This study aimed to investigate whether neurotransmitter receptors in the nervous system were also expressed in oral keratinocytes. Expressions of various neurotransmitter receptor genes in immortalized mouse oral keratinocyte (IMOK) cells were examined by reverse transcriptase polymerase chain reaction. IMOK cells expressed calcitonin gene-related peptide (CGRP) receptor subunit genes Ramp1 and Ramp3 and glutamate receptor subunit genes Grina , Gria3 , Grin1 , Grin2a , and Grin2d . Moreover, IMOK cells expressed Adrb2 and Chrna5 that encode beta 2 adrenergic receptor and cholinergic receptor nicotinic alpha 5 for sympathetic and parasympathetic neurotransmitters, respectively. The expression of Bdkrb1 and Ptger4 , which encode receptors for bradykinin and prostaglandin E2 involved in inflammatory responses, was also observed at low levels. Expressions of Ramp1 and Grina in the mouse gingival epithelium were also confirmed by immunohistochemistry. When the function of neurotransmitter receptors expressed on IMOK cells was tested by intracellular calcium response, CGRP, glutamate, and cholinergic receptors did not respond to their agonists, but the bradykinin receptor responded to bradykinin. Collectively, oral keratinocytes express several neurotransmitter receptors, suggesting the potential regulation of oral epithelial homeostasis by the nervous system.

5.
Journal of Periodontal & Implant Science ; : 83-96, 2020.
Article | WPRIM | ID: wpr-836238

ABSTRACT

Purpose@#The present study aimed to evaluate the clinical benefit of additional toothbrushing accompanying non-surgical periodontal treatment on oral and general health in patients with type 2 diabetes mellitus (T2DM). @*Methods@#We conducted a doubled-blind randomized controlled trial in 60 T2DM patients between June 2013 and June 2014. The patients were randomly assigned to the scaling and root planing (SRP) group; the scaling and root planing with additional toothbrushing (SRPAT) group, in which additional toothbrushing was performed by toothpick methods; or the control group. Microbiological and oral examinations were performed for up to 12 weeks following treatment. Non-surgical treatment was conducted in the experimental groups. The SRP group received scaling and root planing and the SRPAT group received additional toothbrushing with the Watanabe method once a week from the first visit through the fifth visit. The primary outcomes were changes in haemoglobin A1c (or glycated haemoglobin; HbA1c) levels, serum endotoxin levels, and interleukin-1 beta levels. Periodontal health status was measured by periodontal pocket depth, the calculus index, and bleeding on probing (BOP). @*Results@#Both the SRP and SRPAT groups showed improvements in periodontal health and HbA1c, but the SRPAT group showed significantly less BOP than the SRP group. Furthermore, only the SRPAT group showed a statistically significant decrease in serum endotoxin levels. @*Conclusions@#Non-surgical periodontal treatment was effective in improving HbA1c and serum endotoxin levels in T2DM patients. Furthermore, non-surgical treatment with additional tooth brushing had a more favourable effect on gingival bleeding management.Trial RegistrationClinical Research Information Service Identifier: KCT000416

6.
The Korean Journal of Internal Medicine ; : 1188-1198, 2020.
Article | WPRIM | ID: wpr-831914

ABSTRACT

Background/Aims@#A link between oral cavity infections and chemotherapy-induced oral mucositis (CIOM) in patients with hematological malignancies (HMs) undergoing intensive chemotherapy (IC) or hematopoietic stem cell transplantation (HSCT) has been suggested. However, conclusive data are lacking, and there are no current guidelines for the prophylactic use of antimicrobials to prevent CIOM in these populations. @*Methods@#The relationships between herpes simplex virus (HSV) reactivation and Candida colonization in the oral cavity and CIOM in patients with HMs undergoing IC or HSCT were evaluated. Patients aged ≥ 19 years with HMs undergoing IC or HSCT were enrolled. Each patient was evaluated for HSV and Candida in the oral cavity along with CIOM at baseline and during the 2nd, 3rd, and 4th weeks. @*Results@#Seventy presentations among 56 patients were analyzed. CIOM was observed in 23 presentations (32.9%), with a higher incidence associated with HSCT (17 of 35 presentations, 48.6%) than with IC (six of 35 presentations, 8.6%). The reactivation of HSV-1 was significantly associated with an increased incidence of CIOM after adjusting for age, sex, type of disease, and treatment stage. A higher HSV-1 viral load was associated with an increased incidence of CIOM. The presence of Candida was not associated with CIOM. @*Conclusions@#HSV-1 reactivation in the oral cavity was highly associated with CIOM in patients with HMs undergoing high-dose chemotherapy.

7.
International Journal of Oral Biology ; : 211-217, 2020.
Article in English | WPRIM | ID: wpr-898688

ABSTRACT

Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren’s syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequenceof PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope “E” and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund’s adjuvant. The concentrations of the antibodies in sera were measured using enzyme- linked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only theimmunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.

8.
International Journal of Oral Biology ; : 211-217, 2020.
Article in English | WPRIM | ID: wpr-890984

ABSTRACT

Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren’s syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequenceof PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope “E” and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund’s adjuvant. The concentrations of the antibodies in sera were measured using enzyme- linked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only theimmunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.

9.
Journal of Periodontal & Implant Science ; : 284-294, 2018.
Article in English | WPRIM | ID: wpr-766076

ABSTRACT

PURPOSE: Epithelial barrier dysfunction is involved in the pathophysiology of periodontitis and oral lichen planus. Estrogens have been shown to enhance the physical barrier function of intestinal and esophageal epithelia, and we aimed to investigate the effect of estradiol (E2) on the regulation of physical barrier and tight junction (TJ) proteins in human oral epithelial cell monolayers. METHODS: HOK-16B cell monolayers cultured on transwells were treated with E2, an estrogen receptor (ER) antagonist (ICI 182,780), tumor necrosis factor alpha (TNFα), or dexamethasone (Dexa), and the transepithelial electrical resistance (TER) was then measured. Cell proliferation was measured by the cell counting kit (CCK)-8 assay. The levels of TJ proteins and nuclear translocation of nuclear factor (NF)-κB were examined by confocal microscopy. RESULTS: E2 treatment increased the TER and the levels of junctional adhesion molecule (JAM)-A and zonula occludens (ZO)-1 in a dose-dependent manner, without affecting cell proliferation during barrier formation. Treatment of the tight-junctioned cell monolayers with TNFα induced decreases in the TER and the levels of ZO-1 and nuclear translocation of NF-κB. These TNFα-induced changes were inhibited by E2, and this effect was completely reversed by co-treatment with ICI 182,780. Furthermore, E2 and Dexa presented an additive effect on the epithelial barrier function. CONCLUSIONS: E2 reinforces the physical barrier of oral epithelial cells through the nuclear ER-dependent upregulation of TJ proteins. The protective effect of E2 on the TNFα-induced impairment of the epithelial barrier and its additive effect with Dexa suggest its potential use to treat oral inflammatory diseases involving epithelial barrier dysfunction.


Subject(s)
Humans , Architectural Accessibility , Cell Count , Cell Proliferation , Dexamethasone , Electric Impedance , Epithelial Cells , Estradiol , Estrogens , Junctional Adhesion Molecule A , Junctional Adhesion Molecules , Lichen Planus, Oral , Microscopy, Confocal , NF-kappa B , Periodontitis , Tight Junctions , Tumor Necrosis Factor-alpha , Up-Regulation
10.
International Journal of Oral Biology ; : 123-128, 2017.
Article in Korean | WPRIM | ID: wpr-201472

ABSTRACT

Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder for which no curative treatment is available. We previously reported that decreased Streptococcus salivarius and increased Acinetobacter johnsonii on the oral mucosa are associated with RAS risk. The purpose of this study was to identify antibiotics that selectively inhibit A. johnsonii but minimally inhibit oral mucosal commensals. S. salivarius KCTC 5512, S. salivarius KCTC 3960, A. johnsonii KCTC 12405, Rothia mucilaginosa KCTC 19862, and Veillonella dispar KCOM 1864 were subjected to antibiotic susceptibility test using amoxicillin, cefotaxime, gentamicin, clindamycin, and metronidazole in liquid culture. The minimal inhibitory concentration (MIC) was defined as the concentration that inhibits 90% of growth. Only gentamicin presented a higher MIC for A. johnsonii than MICs for S. salivarius and several oral mucosal commensals. Interestingly, the growth of S. salivarius increased 10~200% in the presence of sub-MIC concentrations of gentamicin, which was independent of development of resistance to gentamicin. In conclusion, gentamicin may be useful to restore RAS-associated imbalance in oral microbiota by selectively inhibiting the growth of A. johnsonii but enhancing the growth of S. salivarius.


Subject(s)
Acinetobacter , Amoxicillin , Anti-Bacterial Agents , Cefotaxime , Clindamycin , Gentamicins , Mass Screening , Metronidazole , Microbiota , Mouth Mucosa , Stomatitis, Aphthous , Streptococcus , Veillonella
11.
Immune Network ; : 103-109, 2017.
Article in English | WPRIM | ID: wpr-51911

ABSTRACT

The pathophysiology of glandular dysfunction in Sjögren's syndrome (SS) has not been fully elucidated. Previously, we reported the presence of autoantibodies to AQP-5 in patients with SS, which was associated with a low resting salivary flow. The purpose of this study was to investigate the presence of anti-AQP1 autoantibodies. To detect anti-AQP1 autoantibodies, cell-based indirect immunofluorescence assay was developed using MDCK cells that overexpressed human AQP1. By screening 112 SS and 52 control sera, anti-AQP1 autoantibodies were detected in 27.7% of the SS but in none of the control sera. Interestingly, the sera that were positive for anti-AQP1 autoantibodies also contained anti-AQP5 autoantibodies in the previous study. Different from anti-AQP5 autoantibodies, the presence of anti-AQP1 autoantibodies was not associated with the salivary flow rate. Although anti-AQP1 autoantibodies are not useful as a diagnostic marker, the presence of autoantibodies to AQP1 may be an obstacle to AQP1 gene therapy for SS.


Subject(s)
Humans , Aquaporin 1 , Autoantibodies , Fluorescent Antibody Technique , Fluorescent Antibody Technique, Indirect , Genetic Therapy , Madin Darby Canine Kidney Cells , Mass Screening
12.
International Journal of Oral Biology ; : 17-23, 2016.
Article in English | WPRIM | ID: wpr-32083

ABSTRACT

Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-Lefèvre syndrome, and Chédiak-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of Pam3CSK4, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. Pam3CSK4 significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. Pam3CSK4 alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and Pam3CSK4 decreased the amounts of ROS, as compared to Pam3CSK4 alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of Pam3CSK4. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis , an early colonizer, in subgingival biofilm.


Subject(s)
Humans , Bacteria , Biofilms , Colon , Flow Cytometry , Leukocyte-Adhesion Deficiency Syndrome , Ligands , Luminescence , Neutropenia , Neutrophils , Periodontitis , Phagocytosis , Porphyromonas gingivalis , Reactive Oxygen Species , Streptococcus , Toll-Like Receptor 2 , Toll-Like Receptors
13.
Journal of Periodontal & Implant Science ; : 266-273, 2014.
Article in English | WPRIM | ID: wpr-54151

ABSTRACT

PURPOSE: We previously reported that human serum significantly reduces the invasion of various oral bacterial species into gingival epithelial cells in vitro. The aims of the present study were to characterize the serum component(s) responsible for the inhibition of bacterial invasion of epithelial cells and to examine their effect on periodontitis induced in mice. METHODS: Immortalized human gingival epithelial (HOK-16B) cells were infected with various 5- (and 6-) carboxy-fluorescein diacetate succinimidyl ester-labeled oral bacteria, including Fusobacterium nucleatum, Provetella intermedia, Porphyromonas gingivalis, and Treponiema denticola, in the absence or presence of three major serum components (human serum albumin [HSA], pooled human IgG [phIgG] and alpha1-antitrypsin). Bacterial adhesion and invasion were determined by flow cytometry. The levels of intracellular reactive oxygen species (ROS) and activation of small GTPases were examined. Experimental periodontitis was induced by oral inoculation of P. gingivalis and T. denticola in Balb/c mice. RESULTS: HSA and phIgG, but not alpha1-antitrypsin, efficiently inhibited the invasion of various oral bacterial species into HOK-16B cells. HSA but not phIgG decreased the adhesion of F. nucleatum onto host cells and the levels of intracellular ROS in HOK-16B cells. N-acetylcysteine (NAC), a ROS scavenger, decreased both the levels of intracellular ROS and invasion of F. nucleatum into HOK-16B cells, confirming the role of ROS in bacterial invasion. Infection with F. nucleatum activated Rac1, a regulator of actin cytoskeleton dynamics. Not only HSA and NAC but also phIgG decreased the F. nucleatum-induced activation of Rac1. Furthermore, both HSA plus phIgG and NAC significantly reduced the alveolar bone loss in the experimental periodontitis induced by P. gingivalis and T. denticola in mice. CONCLUSIONS: NAC and the serum components HSA and phIgG, which inhibit bacterial invasion of oral epithelial cells in vitro, can successfully prevent experimental periodontitis.


Subject(s)
Animals , Humans , Mice , Acetylcysteine , Actin Cytoskeleton , Albumins , Alveolar Bone Loss , Bacteria , Bacterial Adhesion , Epithelial Cells , Flow Cytometry , Fusobacterium nucleatum , Immunoglobulin G , Monomeric GTP-Binding Proteins , Periodontitis , Porphyromonas gingivalis , Reactive Oxygen Species , Serum Albumin
14.
Immune Network ; : 7-13, 2014.
Article in English | WPRIM | ID: wpr-192390

ABSTRACT

Molecular mimicry is an attractive mechanism for triggering autoimmunity. In this review, we explore the potential role of evolutionary conserved bacterial proteins in the production of autoantibodies with focus on granulomatosis with polyangiitis (GPA) and rheumatoid arthritis (RA). Seven autoantigens characterized in GPA and RA were BLASTed against a bacterial protein database. Of the seven autoantigens, proteinase 3, type II collagen, binding immunoglobulin protein, glucose-6-phosphate isomerase, alpha-enolase, and heterogeneous nuclear ribonuclear protein have well-conserved bacterial orthologs. Importantly, those bacterial orthologs are also found in human-associated bacteria. The wide distribution of the highly conserved stress proteins or enzymes among the members of the normal flora and common infectious microorganisms raises a new question on how cross-reactive autoantibodies are not produced during the immune response to these bacteria in most healthy people. Understanding the mechanisms that deselect auto-reactive B cell clones during the germinal center reaction to homologous foreign antigens may provide a novel strategy to treat autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Autoantigens , Autoimmune Diseases , Autoimmunity , Bacteria , Bacterial Infections , Bacterial Proteins , Clone Cells , Collagen Type II , Germinal Center , Glucose-6-Phosphate Isomerase , Heat-Shock Proteins , Immunoglobulins , Molecular Mimicry , Myeloblastin , Phosphopyruvate Hydratase
15.
Journal of Periodontal & Implant Science ; : 3-11, 2013.
Article in English | WPRIM | ID: wpr-18706

ABSTRACT

Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.


Subject(s)
Bacteria , Defense Mechanisms , Epithelial Cells , Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Inflammation , Interleukin-8 , Interleukins , Neutrophils , Peptides , Periodontitis , Phagocytosis , Receptors, Pattern Recognition
16.
International Journal of Oral Biology ; : 69-75, 2012.
Article in English | WPRIM | ID: wpr-23058

ABSTRACT

Although neutrophils function in both defense and tissue destruction, their defensive roles have rarely been studied in association with periodontitis. We hypothesized that peripheral neutrophils are pre-activated in vivo in periodontitis and that hyperactive neutrophils would show enhanced phagocytic ability as well as an increased production of reactive oxygen species (ROS). Peripheral blood neutrophils from patients with aggressive periodontitis and age/gender-matched healthy subjects (10 pairs) were isolated. The levels of CD11b and CD64 expression on the neutrophils and the level of plasma endotoxin were determined by flow cytometry and a limulus amebocyte lysate test, respectively. In addition, neutrophils were subjected to a flow cytometric phagocytosis assay and luminol-enhanced chemiluminescence for non-opsonized Fusobacterium nucleatum in parallel. The neutrophilsfrom most patients expressed increased levels of both CD11b and CD64. In addition, the plasma from these patients tended to contain a higher level of endotoxin than the healthy controls. In contrast, no differences were found between the two groups with regard to phagocytosis or ROS generation by F. nucleatum. The ability to phagocytose F. nucleatum was found to positively correlate with the ability to produce ROS. In conclusion, peripheral neutrophils from patients with aggressive periodontitis are hyperactive but not hyperreactive to F. nucleatum.


Subject(s)
Humans , Aggressive Periodontitis , Flow Cytometry , Fusobacterium nucleatum , Horseshoe Crabs , Luminescence , Neutrophils , Periodontitis , Phagocytosis , Phenotype , Plasma , Reactive Oxygen Species
17.
Experimental & Molecular Medicine ; : 524-532, 2005.
Article in English | WPRIM | ID: wpr-191499

ABSTRACT

Receptor activator of NFkappaB ligand (RANKL) is known as a key regulator of osteoclastogenesis. However, the fact that fibroblasts and periodontal ligament cells express RANKL in response to bacterial substances, suggests that RANKL may have evolved as a part of the immunity to infection. As RANKL increases the survival and activity of dendritic cells, it may have similar effects on macrophages. To address this issue, we studied the effect of RANKL on various functions of macrophages using mouse bone marrow derived macrophages. RANKL enhanced the survival of macrophages and up-regulated the expression of CD86. RANKL-treated macrophages showed increased allogeneic T cell activation and phagocytic activity compared to control cells. In addition, RANKL increased the expression of TNFalpha, MCP-1, and IL-6 but not of IL-10, IL-12, IFN-gamma, and iNOS. Collectively, RANKL augmented the activity of macrophages especially as antigen presenting cells, suggesting its new role in immune regulation.


Subject(s)
Animals , Mice , Antigen-Presenting Cells/cytology , B7-2 Antigen/metabolism , Carrier Proteins/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Flow Cytometry , Histocompatibility Antigens Class II/metabolism , Inflammation Mediators , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/cytology , Membrane Glycoproteins/pharmacology , Mice, Inbred C57BL , Mice, Inbred ICR , Nitric Oxide Synthase Type II/metabolism , Phagocytosis/drug effects , T-Lymphocytes/immunology , Up-Regulation/drug effects
18.
Experimental & Molecular Medicine ; : 385-392, 2003.
Article in English | WPRIM | ID: wpr-171362

ABSTRACT

Host immune response has been considered as an important disease-modifying factor of periodontitis, however, which immune cell(s) or factor(s) are involved in the destruction of periodontium remains unclear. Previously, we reported that osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+)T cells. We present new data that B cells activated in the presence of Th1 cytokines inhibit osteoclastogenesis. Purified murine B cells were activated with anti-IgD mAb, IL-4, and anti-CD40 mAb, in the absence (B(Th2)) or presence of Th1 cytokines, either IL-2 (B(IL-2)) or IFN-gamma (B(IFN-gamma)). Each activated B cell population was co-cultured with RAW264.7 cells in the presence of soluble receptor activator of NF-kappaB ligand (sRANKL), and the effect on osteoclastic differentiation was evaluated. While B(Th2)increased osteoclastogenesis, B(IL-2)and B(IFN-gamma)suppressed it profoundly. To verify the mediating molecule(s), we analyzed cytokine profiles of the activated B cells. Compared to B(Th2), B(IL-2)expressed increased amount of IFN-gamma and B(IFN-gamma)expressed decreased amounts of IL-4, IL-5, and IL-10. IFN-gamma was a key negative regulator of osteoclastic differentiation, and mediated the inhibition by B(IL-2). These results suggest that Th1 cytokines may have new important roles in resistance to periodontitis, acting directly on osteoclasts or indirectly through B cells.


Subject(s)
Animals , Female , Mice , B-Lymphocytes/cytology , Base Sequence , Cell Differentiation/drug effects , Cytokines/pharmacology , Giant Cells/cytology , Interferon-gamma/immunology , Lymphocyte Activation/drug effects , Molecular Sequence Data , Osteoclasts/cytology , Phenotype , Th1 Cells/immunology , Tumor Necrosis Factor-alpha/pharmacology
19.
Experimental & Molecular Medicine ; : 347-352, 2002.
Article in English | WPRIM | ID: wpr-203702

ABSTRACT

Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor superfamily, is known to inhibit osteoclastogenesis by acting as a soluble decoy receptor for the receptor activator of NF-kB ligand (RANKL). We report the presence of OPG on the membrane of osteoclasts and the possibility of the direct action of OPG on them. Highly pure osteoclast precursors were isolated from mouse long bones and induced to differentiate into mature osteoclasts by M-CSF and soluble RANKL (sRANKL). The presence of OPG on the membrane of these cells was confirmed by western blotting and immunostaining. Furthermore, sRANKL was found to be bound to the OPG on the osteoclast precursors. These results suggest that OPG might have a new role during the differentiation of osteoclasts beyond its role as a soluble decoy receptor. The mechanism of the existence of OPG on osteoclast precursors remains to be found.


Subject(s)
Animals , Mice , Bone and Bones/cytology , Carrier Proteins/immunology , Cell Differentiation/drug effects , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Membrane Glycoproteins/immunology , Mice, Inbred ICR , Osteoclasts/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL